Определение общей минерализации воды. Обсуждение оптимального минерального состава питьевой воды. Классификация воды по составу

Ни для кого не секрет, что на бытовом уровне отношение к качеству воды зачастую бывает легкомысленным, основанным на вкусовой оценке «нравится - не нравится». Существуют объективные показатели качества воды, которые должны соблюдаться непосредственно при потреблении. Изначально вода стандартного качества, но по дороге к потребителю она может вобрать в себя много «лишнего».

Что такое pH?

pH - это водородный показатель, который характеризует концентрацию свободных ионов водорода в воде. Для удобства отображения был введен специальный показатель, названный рН.

pH воды - один из важнейших рабочих показателей качества воды, во многом определяющих характер химических и биологических процессов, происходящих в воде. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д.

Обычно уровень рН находится в пределах, при которых он не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3. Поэтому Всемирная Организация Здравоохранения (далее - ВОЗ) не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН.

Что такое минерализация воды?

Минерализация представляет собой количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей.

По данным ВОЗ надежные данные о возможном воздействии на здоровье повышенного солесодержания отсутствуют. Поэтому по медицинским показаниям ограничения ВОЗ не вводятся. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л, однако уже при величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей.

Вопрос о воде с низким солесодержанием также открыт. Считается, что такая вода слишком пресная и безвкусная, хотя многие тысячи людей, употребляющих обратноосмотическую воду, отличающуюся очень низким солесодержанием, наоборот находят ее более приемлемой.

Что означает «мягкая» и «жесткая» вода»?

Жесткостью называют свойство воды, обусловленное наличием в ней растворимых солей кальция и магния.

"Жесткая вода" - одна из самых распространенных проблем, причем как в загородных домах с автономным водоснабжением, так и в городских квартирах. Степень жесткости измеряется в миллиграмм-эквиваленте на литр (мг-экв/л). По американской классификации (для питьевой воды) при содержании солей жесткости менее 2 мг-экв/л вода считается "мягкой", от 2 до 4 мг-экв/л - нормальной (для пищевых целей), от 4 до 6 мг-экв/л - жесткой, а свыше 6 мг-экв/л - очень жесткой.

Для многих целей жесткость воды не играет существенной роли (например, для тушения пожаров, полива огорода, уборки улиц и тротуаров). Но в ряде случаев жесткость может создать проблемы. При принятии ванны, мытье посуды, стирке, мытье машины жесткая вода гораздо менее предпочтительна, чем мягкая. И вот почему: при использовании мягкой воды расходуется в 2 раза меньше моющих средств.

Жесткая вода, взаимодействуя с мылом, образует "мыльные шлаки", которые не смываются водой и оставляют малосимпатичные разводы на посуде и поверхности сантехники; "Мыльные шлаки" также не смываются с поверхности человеческой кожи, забивая поры и покрывая каждый волос на теле, что может стать причиной появления сыпи, раздражения, зуда.

При нагревании воды содержащиеся в ней соли жесткости кристаллизуются, выпадая в виде накипи. Накипь является причиной 90% отказов водонагревательного оборудования. Поэтому к воде, подвергаемой нагреву в котлах, бойлерах и т.п., предъявляются на поря-док более строгие требования по жесткости;

Что такое железистая вода?

Разные виды железа "ведут" себя в воде по-разному. Так, если наливаемая в сосуд вода чиста и прозрачна, но через некоторое время образуется краснобурый осадок, то это признак наличия в воде двухвалентного железа. В случае если вода уже из крана идет желтовато-бурая и образуется осадок при отстаивании - надо "винить" трехвалентное железо. Коллоидное железо окрашивает воду, но не образует осадка. Бактериальное железо проявляет себя радужной пленкой на поверхности воды и желеобразной массой, накапливаемой внутри труб.

Необходимо также отметить, что "беда никогда не ходит одна" и на практике почти всегда встречается сочетание нескольких или даже всех видов железа. Учитывая, что нет единых утвержденных методик определения органического, коллоидного и бактериального железа, то в деле подбора эффективного метода (или комплекса метдов) очистки воды от железа очень много зависит от практического опыта фирмы, занимающейся водоочисткой.

Методы удаления железа из воды

Удаление из воды железа - без преувеличения одна из самых сложных задач в водоочистке. Каждый из существующих методов применим только в определенных пределах, и имеет как достоинства, так и существенные недостатки. Выбор конкретного метода удаления железа (или их комбинации) в большей степени зависит от опыта водоочистной компании. Не без гордости можем сообщить, что нам в своей практике неоднократно приходилось сталкиваться с содержанием железа в 20-35 мг/л и успешно удалять его.

Итак, к существующим методам удаления железа можно отнести:

1. Окисление (кислородом воздуха или хлором, перекисью водорода, озоном) с последующим осаждением и фильтрацией. Это наиболее старый способ и используется только на крупных муниципальных системах. Наиболее передовым и сильным окислителем на сегодняшний день является озон. Однако установки для его производства довольно сложны, дороги и требуют значительных затрат электроэнергии, что ограничивает его применение.

У всех перечисленных способов окисления есть ряд недостатков:

Во-первых, если не применять коагулянты, то процесс осаждения окисленного железа занимает долгое время, в противном же случае фильтрация некоагулированных частиц сильно затрудняется из-за их малого размера.

Во-вторых, эти методы окисления слабо помогают в борьбе с органическим железом.

В-третьих, наличие в воде железа часто сопровождается наличием марганца. Марганец окисляется гораздо труднее, чем железо и, кроме того, при значительно более высоких уровнях рН.

2. Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в компактных высокопроизводительных системах.

Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления).

Все системы на основе данного типа окисления кроме специфических черт имеют и ряд недостатков:

Во-первых. Они неэффективны в отношении органического железа.

Во-вторых, системы этого типа все равно не могут справиться со случаями, когда содержание железа в воде превышает 15-20 мг/л, что совсем не редкость. Присутствие в воде марганца только усугубляет ситуацию.

3. Ионный обмен. Ионный обмен как метод обработки воды известен довольно давно и применялся (да и теперь применяется) в основном для умягчения воды. Достоинством ионного обмена является также и то, что он "не боится" верного спутника железа - марганца, сильно осложняющего работу систем, основанных на использовании методов окисления. Главное же преимущество ионного обмена в том, что из воды могут быть удалены железо и марганец, находящиеся в растворенном состоянии.

Однако на практике, возможность применения катионообменных смол по железу, бывает сильно затруднена.

Объясняется это следующими причинами:

Во-первых, ионообменные смолы очень критичны к наличию в воде трехвалентного железа, которое "забивает" смолу и очень плохо из нее вымывается.

Во-вторых, при высокой концентрации в воде железа, с одной стороны возрастает вероятность образования нерастворимого трехвалентного железа, и, с другой стороны, гораздо быстрее истощается ионообменная ёмкость смолы.

В-третьих, наличие в воде органических веществ (в том числе и органического железа) может привести к быстрому "зарастанию" смолы органической пленкой, которая служит питательной средой для бактерий.

Тем не менее, именно применение ионообменных смол представляется наиболее перспективным направлением в деле борьбы с железом и марганцем в воде.

4. Мембранные методы. Мембранные технологии достаточно широко используются в водоподготовке, однако удаление железа отнюдь не главное их предназначение. Этим и объясняется тот факт, что применение мембран пока не входит в число стандартных методов борьбы с присутствием в воде железа. Основное назначение мембранных систем - удаление бактерий, простейших и вирусов, подготовка высококачественной питьевой воды. То есть они предназначены для глубокой доочистки воды.

Практическое же применение мембран ограничено следующими факторами:

Во-первых, мембраны даже в большей степени, чем гранулированные фильтрующие среды и ионообменные смолы, критичны к "зарастанию" органикой и забиванию поверхности нерастворимыми частицами (в данном случае ржавчиной). То есть мембранные системы применимы либо там, где нет железа, либо проблема с этими загрязнениями должна быть предварительно решена другими методами.

Во-вторых, стоимость. Мембранные системы весьма и весьма недешевы. Их применение рентабельно только там, где требуется очень высокое качество воды (например, в пищевой промышленности).

Что такое окисляемость?

Окисляемость - это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей.

Выражается этот параметр в миллиграммах кислорода, участвовшего в окислении этих веществ, содержащихся в 1 дм3 воды.

Наиболее высокая степень окисления достигается бихроматным и иодатным методами. Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды.


Поверхностные воды имеют более высокую окисляемость по сравнению с подземными. Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные - 5-12 мг О2 /дм3. Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2 /дм3.

Как нормируются чувственные показатели качества воды?

К числу органолептических (или чувственных) показателей относятся те параметры качества воды, которые определяют ее потребительские свойства, т.е. те свойства, которые непосредственно влияют на органы чувств человека (обоняние, осязание, зрение). Наиболее значимые из этих параметров - вкус и запах - не поддаются формальному измерению, поэтому их определение производится экспертным путем. Работа экспертов, дающих оценку органолептическим свойствам воды, очень сложна и ответственна и во многом сродни работе дегустаторов самых изысканных напитков, так как они должны улавливать малейшие оттенки вкуса и запаха.

Запах и привкус

Химически чистая вода совершенно лишена вкуса и запаха. Однако в природе такая вода не встречается - она всегда содержит в своем составе растворенные вещества. По мере роста концентрации неорганических и органических веществ, вода начинает принимать тот или иной привкус и/или запах.

Основными причинами возникновения привкуса и запаха в воде являются:

  • Гниющие растения. Водоросли и водные растения в процессе гниения могут взывать рыбный, травяной, гнилостный запах воды.
  • Грибки и плесень. Эти микроорганизмы вызывают возникновение плесневого, зем-листого или затхлого запаха и привкуса.
  • Железистые и сернистые бактерии.
  • Железо, марганец, медь, цинк. Продукты коррозии этих металлов придают воде характерный резкий привкус.
  • Хлорирование воды. Вопреки широко распространенному мнению, сам хлор при правильном использовании не вызывает возникновения сколько-нибудь заметного запаха или привкуса. Появление же такого запаха/привкуса свидетельствует о передозировке при хлорировании. В то же время, хлор способен вступать в химические реакции с различными растворенными в воде веществами, образуя при этом соединения, которые собственно и придают воде хорошо известный многим запах и привкус "хлорки".

Цветность

Цветность определяется путем сравнения окраски испытуемой воды с эталонами и выражается в градусах платиново-кобальтовой шкалы. Различают "истинный цвет", обусловленный только растворенными веществами, и "кажущийся" цвет, вызванный присутствием в воде коллоидных и взвешенных частиц.

Цветность природных вод обусловлена в основном присутствием окрашенных органических веществ и соединений железа и некоторых других металлов.

Наибольшую цветность имеют поверхностные воды рек и озер, расположенных в зонах торфяных болот и заболоченных лесов, наименьшую - в лесостепях и степных зонах.

Мутность

Мутность воды вызвана присутствием веществ органического и неорганического происхождения.

В России мутность воды определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм3 при использовании основной стандартной суспензии каолина или в ЕМ/дм3 (едини-цы мутности на дм3) при использовании основной стандартной суспензии формазина.

Общее микробное число

В связи с тем, что определение патогенных бактерий при биологическом анализе воды представляет собой непростую и трудоемкую задачу, в качестве критерия бактериологической загрязненности используют подсчет общего числа образующих колонии бактерий (Colony Forming Units - CFU) в 1 мл воды. Полученное значение называют общим микробным числом.

В основном для выделения бактерий и подсчета общего микробного числа используют метод фильтрации через мембрану.
При этом методе определенное количество воды пропускается через специальную мембрану. В результате, на поверхности мембраны остаются все находящиеся в воде бактерии. После чего мембрану с бактериями помещают на определенное время в специальную питательную среду при температуре 30-37 оС.

Во время этого периода, называемого инкубационным, бактерии получают возможность размножиться и образовать хорошо различимые колонии, которые уже легко поддаются подсчету.

Колиформные бактерии

Термин "Колиформные организмы" (или "колиформные бактерии") относится к классу бактерий, имеющих форму палочек, в основном живущих и размножающихся в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных (например, домашнего скота и водоплавающих птиц).

В воду попадают, как правило, с фекальными стоками и способны выживать в ней в течение нескольких недель, хотя и лишены способности к размножению.

По степени минерализации выделяют 3 категории питьевой воды: столовая питьевая вода, лечебно-столовая минеральная питьевая вода, лечебная минеральная питьевая вода.

Столовые питьевые воды - воды с общей минерализацией до 1г/л. Такая вода рекомендована для ежедневного потребления. Не имеет ограничений на употребление.

Фактически эта вся питьевая вода, которую мы употребляем ежедневно, в том числе для приготовления еды, чая, кофе, прохладительных напитков. Все бутилированные воды объемом 19 л и 5 л являются столовыми питьевыми водами. Так же столовая питьевая вода выпускается объемами по 1,5 л, 0,5 л, 0,33 л и 0,25 л. Тара, в которой выпускается столовая питьевая вода может быть пластиковой или стеклянной.

Часто питьевую бутилированную воду объемом 1,5 л или 0,5 л называют "минералкой". Это не совсем правильно. Действительно на некоторых этикетках со столовой питьевой водой пишется минеральная, но в данном случае имеется в виду не степень минерализации, а официальное название продукта согласно классификации ТУ или СанПин.

К столовым питьевым водам относятся такие бренды как Архыз, Ахсау, Увинская жемчужина, Горная вершина, Сальковская, Пилигримм, Домбай, Шишкин лес, Nestle, Старомытищинская. В том числе продукция известных брендов АкваМинерале и БонАква являются также столовыми питьевыми водами.

Лечебно-столовую питьевую воду можно употреблять в качестве освежающего напитка или использовать в лечебно-профилактических целях. Такая вода имеет ограничение на употребление - не более 1,5 л. в сутки. При превышении данного лимита излишки солей и минералов могут откладываться в мягких тканях и привести к развитию заболеваний различной степени тяжести.

К лечебно-столовым минеральным водам относятся большинство известных нам брендов "минералки" - "Нарзан", "Боржоми", "Ессентуки-2", "Ессентуки-4", "Ессентуки-7", "Новотерская целебная", "Кармадон", "Джермук" и т. д.

Регулярное употребление лечебно-столовой питьевой воды поможет насытить организм необходимыми невоспроизводимыми минералами и микроэлментами, поможет справиться с нарушениями работы желудочно-кишечного тракта, улучшить перильстатику кишечника, нормализовать работу желчного пузыря, печени, почек.

Лечебные минеральные питьевые воды . К таким относятся воды с общей минерализацией более 10 г/л. Лечебные воды необходимо употреблять только после консультации с врачом. Как правило они пьются курсами по режиму, часто перед употреблением их подогревают до нужной температуры.

Благодаря высокой степени минерализации эти воды обладают явно выраженным лечебным эффектом. Лечебные минеральные воды имеют строгое ограничение на употребление. Данное ограничение устанавливает врач, назначающий курс лечения минеральными водами. Не стоит употреблять лечебные минеральные воды каждый день бесконтрольно, т. к. это может вызвать сильнейшее расстройство желудка и кишечника.

К лечебным минеральным водам относятся такие бренды как "Увинская лечебная", "DonatMg", "Ессентуки-17", "Новоижевская", "Семигородская" и т. д.

Лечение лечебными минеральными водами назначают при ожирении, сахарном диабете, гипертонической болезни, подагре, климактерических расстройствах, изжоге, заболеваниях органов дыхания, желудочно-кишечных заболеваниях и т. д.

Это количественный показатель содержания растворенных в воде веществ. Его еще называют содержанием твердых веществ или общим солесодержанием, так как вещества растворенные в воде находятся в виде солей. Наиболее распространенные неорганические соли (бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и маленькое количество органических веществ, растворимых в воде. Общую минерализацию путают с сухим остатком. На самом деле, эти параметры очень близки, но методы их определения разные. При определении сухого остатка, не учитываются более летучие органические соединения, растворенные в воде. В результате общая минерализация и сухой остаток могут отличаться на величину этих летучих соединений (как, правило, не более 10%). Уровень солесодержания в питьевой воде обусловлен качеством воды в природных источниках (которые существенно варьируются в разных геологических регионах вследствие различной растворимости минералов).

По общем минерализации воды делятся на следующие категории:

Кроме факторов, обусловленных природой, на общую минерализацию воды большое влияние оказывает человек: сточные воды промышленности, городские ливневые стоки (Соль используется зимой в качестве антиобледенителя) и т.п. По данным Всемирной Организации Здравоохранения достоверная информация о воздействии повышенного солесодержания на здоровье отсутствует. По медицинским показаниям ВОЗ ограничения не вводит. Как правило нормальным вкус воды считается при общей минерализации до 600 мг/л, при солесодержании более 1000-1200 мг/л вода может вызвать нарекания у потребителей. В связи с этим ВОЗ по органолептическим показаниям рекомендует предел общей минерализации в 1000 мг/л. Данный уровень может изменяться в зависимости от сложившихся привычек и местных условий. На сегодняшний день в развитых странах люди употребляют воду с низким солесодержанием - воду, очищенную технологией обратного осмоса. Такая вода наиболее чистая и безвредная, она широко используется в пищевой промышленности, изготовление бутилированной воды и т.п. Подробнее о минеральных веществах и воде читайте в статье: Вода и минеральные вещества. Отдельная тема величина минерализации при отложении накипи и осадков в котельном, бойлерном и сантехническом оборудовании. В этом случае к воде применяются специальные требования, и чем меньше уровень минерализации (особенно содержание солей жесткости), тем лучше.

Жесткость

Свойство воды, определенное наличием солей кальция и магния в растворенном виде.

Химия жесткости воды

Принято жесткость воды принято ассоциировать с катионами кальция (Са2+) и в меньшей степени магния (Mg2+). На самом деле, все двухвалентные катионы влияют на жесткость воды. Осадок и накипь (соли жесткости) образуются в результате взаимодействия катионов двухвалентных с анионами. Натрий Na+ - одновалентный катион не взаимодействует с анионами.

Приведем главные катиониты металлов, с которыми они ассоциируются и вызывают жесткость.

Железо, марганец и стронций оказывают на жесткость не большое влияние по сравнению с кальцием и магнием. Растворимость Алюминия и трехвалентного Железа маленькая при уровне pH природной воды, поэтому их влияние на жесткость воды также небольшое.

В основном определяется концентрациями отдельных катионов (в частности, Ca 2+ , Mg 2+ , K + , Na +) и анионов (в частности, Cl - , SO 4 2- , HCO 3 -). Кроме того, есть более общие характеристики, производные от некоторых индивидуальных концентраций - например, общая жесткость и щелочность воды.

Существует и еще более обобщенный показатель - сухой остаток (общая минерализация) воды, т.е. суммарное количество веществ, растворенных в единице объема воды. В принципе, сухой остаток (общая минерализация) определяется содержанием как неорганических (минеральных), так и органических веществ в воде. Однако, в норме концентрация органических соединений в воде пренебрежимо мала, поэтому с достаточной точностью величину сухого остатка (общей минерализации) можно считать равной сумме концентраций неорганических катионов и анионов.

Общая минерализация питьевой воды

Понятия «сухой остаток» и «общая минерализация» часто считают тождественными. Это с связано с тем, что такой интегральный показатель, как суммарное количество растворенных веществ, можно точно вычислить, лишь зная концентрации всех индивидуальных ингредиентов (ионов). Поскольку на практике это далеко не всегда возможно, широко практикуется определение сухого остатка, измеряемого гравиметрическим методом (взвешиванием) после упаривания воды.

Полученные значения, однако, часто оказываются гораздо более низкими, чем арифметическая сумма индивидуальных концентраций. Связано это с термическим разложением гидрокарбонат-ионов с выделением углекислого газа. Поэтому самые значительные расхождения межде величинами сухого остатка и вычисляемой общей минерализацией (TDS - total dissolved solids) наблюдаются для вод с высокой щелочностью, т.е. с высоким содержанием гидрокарбонат-ионов.

Разумеется, сухой остаток (общая минерализация) — гораздо менее информативный показатель, нежели данные полного химического анализа питьевой воды. В то же время, он позволяет получить обобщенное представление о качестве питьевой воды. В первую очередь, о ее органолептических свойствах:

  • слишком высокие (более 1 г/л) значения сухого остатка (общей минерализации) свидетельствуют о том, что такая вода хуже утоляет жажду. Кроме того, вода с очень высокой минерализацией может иметь соленый или горький привкус;
  • вода с очень низкой минерализацией (величина сухого остатка менее 100 мг/л) также может быть неприятна на вкус и небезопасна при постоянном употреблении. Такая вода обычно характеризуется очень низкой жесткостью, т.е. низкими концентрациями ионов кальция и магния, что является значимым фактором риска для развития заболеваний сердечно-сосудистой системы и опорно-двигательного аппарата.

С другой стороны, вода с очень низкой минерализацией (величина сухого остатка менее 100 мг/л) также может быть неприятна на вкус и небезопасна при постоянном употреблении. Такая вода обычно характеризуется очень низкой жесткостью, т.е. низкими концентрациями ионов кальция и магния, что является значимым фактором риска для развития заболеваний сердечно-сосудистой системы и опорно-двигательного аппарата.

На основании результатов многочисленных научных исследований, как эпидемиологических, так и экспериментальных, установлен оптимальный уровень сухого остатка (общей минерализации) питьевой воды — 200-500 мг/л. Вода, минерализованная на уровне до 1000 мг/л, считается качественной, пригодной для питья и приготовления пищи без ограничений. Вода с более высокой минерализацией относится к минеральным водам, употребление которых связано с определенными показаниями и ограничениями.

Для нормализации минерального состава питьевой воды, в том числе для получения питьевой воды с оптимальным значением сухого остатка (общей минерализации) можно использовать минеральные добавки серии «Северянка». Дополняя питьевую воду солями кальция, магния, калия, гидрокарбонат-ионами и другими жизненно важными ингредиентами, «Северянка» оптимизирует значение сухого остатка (общей минерализации) питьевой воды.

Общая минерализация представляет собой суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей. К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое количество органических веществ, растворимых в воде.

Очень часто общую минерализацию воды путают с сухим остатком. Сухой остаток определяется путем выпаривания литра воды и взвешивания того, что осталось. В результате не учитываются более летучие органические соединения, растворенные в воде. Это приводит к тому, что общая минерализация и сухой остаток могут отличаться на небольшую величину - как, правило, не более 10%.

В зависимости от минерализации природные воды можно разделить на следующие категории:

Минерализация г/дм 3

Ультрапресные

Воды с относительно повышенной минерализацией

Солоноватые

Воды повышенной солености

Уровень приемлемости общего солесодержания в воде сильно варьируется в зависимости от местных условий и сложившихся привычек. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л. При величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей. Поэтому по органолептическим показаниям ВОЗ рекомендован верхний предел минерализации воды в 1000 мг/л.

Вопрос о воде с низким солесодержанием также открыт. Считается, что такая вода слишком пресная и безвкусная, хотя многие тысячи людей, употребляющих обратноосмотическую воду, отличающуюся очень низким солесодержанием, наоборот находят ее более приемлемой.

"Водная" тематика все чаще звучит в прессе, при этом часто приводятся рассуждения о достоинствах или недостатках воды с точки зрения снабжения организма минералами. В некоторых материалах, опубликованных в солидных изданиях, достаточно безапелляционно заявляется: "Как известно, с водой мы получаем до 25% суточной потребности химических веществ". Однако докопаться до первоисточников не удается. Попробуем поискать ответ на вопрос: "А сколько же может среднестатистический человек получить минеральных веществ из питьевой воды, отвечающей санитарным нормам?" В своих рассуждениях будем руководствоваться простым житейским здравым смыслом и знаниями в объеме средней школы. Результаты сведем в таблицу. Объясним содержимое ее колонок, а заодно и ход рассуждений.

Для начала необходимо определиться с несколькими исходными позициями:

1. Какие минеральные вещества и в каких количествах нужны человеку?

Вопрос о "минеральном составе" человека и, соответственно, потребностях его организма очень сложный. На бытовом уровне мы очень легко жонглируем (к сожалению и в массовой прессе тоже) терминами "полезные" элементы, "вредные" или "токсичные" элементы и т.п. Начнем с того, что сама постановка вопроса о вредности-полезности химических элементов относительна. Еще в древности было известно, что все дело в концентрациях. То, что полезно в минимальных количествах, может оказаться сильнейшим ядом в больших. Перечень основных (жизненно важных) макроэлементов и нескольких микроэлементов из Популярной медицинской энциклопедии приведен в 1-м столбце.

В качестве норм суточной потребности (2-й столбец) также использованы данные из Популярной медицинской энциклопедии. Причем, за базовое взято минимальное значение для взрослого мужчины (для подростков и женщин, особенно кормящих матерей, эти нормы зачастую больше).

2. Каков минеральный состав "средней" воды?

Понятно, что никакой "средней" воды нет и быть не может. В качестве таковой предлагается использовать гипотетическую воду, то есть, в качестве потребляемой принимается «некая» вода, в которой содержание основных макро- и микроэлементов равно максимально допустимому с точки зрения безопасности для здоровья - 3-й столбец таблицы.

В 4-м столбце таблицы рассчитывается, сколько воды надо употребить, чтобы набрать суточную норму по каждому элементу. Огромным допущением здесь является то, что при расчетах усвояемость минералов из воды принимается за 100%, что далеко не соответствует действительности.

3. Каково суточное потребление воды среднестатистическим человеком?

В сутки непосредственно в виде жидкости (питья и жидкой пищи) человек употребляет в среднем 1,2 л воды. Разделив эту цифру на соответствующую из 4-го столбца, вычисляется процент поступления с водой каждого элемента, который теоретически (с учетом всех вышеперечисленных допущений) может получить в сутки среднестатистический человек (5-й столбец).

Для сравнения в 6-м столбце приведен мини-список пищевых источников поступления в организм тех же элементов. Перечень из нескольких продуктов использован для того, чтобы проиллюстрировать тот факт, что организм получает тот или иной макро- или микроэлемент не за счет одного продукта, а, как правило, понемногу из разных.

В 7-м столбце приведено количество того или иного продукта в граммах, употребление которого даст организму в сутки (с таким же допущением 100% усвояемости, что и для воды) то же количество соответствующего макро- или микроэлемента, что и гипотетическая питьевая вода.

Элемент

Суточная потребность

ПДК в воде

Требуемое количество воды для получения 100% нормы

Теоретически возможный % получения мин. Веществ из воды

Альтерна-тивный
источник

Кол-во продукта, обеспечи-вающее получение макро- и микро-элементов, равное поступающему с водой

Сыр твердый
Брынза
Петрушка
Творог
Курага
Фасоль
Молоко

12 г
24 г
49г
75 г
75 г
80 г
667 г

Фосфор (фосфаты)

Грибы (сушеные)
Фасоль
Сыр твердый
Овсяная крупа
Печень
Рыба
Говядина
Хлеб (ржаной)

24 г
36 г
29 г
41 г
45 г
58 г
77 г
91 г

Арбуз
Орехи
Гречневая крупа
Овсяная крупа
Горох
Кукуруза
Хлеб пшен.2 сорт
Сыр (твердый)

27 г
30 г
30 г
52 г
56 г
56 г
68 г
120 г

Курага
Фасоль
Морская капуста
Горох
Арахис
Картофель
Редька
Помидоры
Свекла
Яблоко

0,86 г
1,31 г
1,44 г
1,66 г
1,87 г
2,53 г
4,03 г
4,97 г
5,00 г
5,18 г

Соль пищевая
Сыр мягкий
Брынза овечья
Капуста кваш.
Огурец сол.
Хлеб ржаной
Креветки
Морская капуста
Камбала

0,6 г
13 г
15 г
26 г
27 г
39 г
45 г
46 г
120 г

Хлор (хлориды)

Соль пищевая
Хлеб ржаной
Хлеб пшеничный
Рыба
Яйцо куриное
Молоко
Печень говяжья
Простокваша
Овсяная крупа

0,5 г
31 г
36 г
182 г
192 г
273 г
300 г
306 г
375 г

Печень говяжья
Свинина
Яйцо куриное
Баранина
Горох
Фасоль
Грецкий орех
Гречка
Хлеб
Молоко коровье

42 г
45 г
57 г
61 г
53 г
63 г
100 г
114 г
170 г
345 г

Белый гриб суш.
Печень свиная
Горох
Гречка
Фасоль
Язык говяжий
Шпинат
Айва
Абрикос
Петрушка

1,1 г
1,8 г
5,3 г
5,4 г
6,1 г
8,8 г
10,3 г
12 г
18 г
19 г

Скумбрия
Минтай
Орех грецкий
Рыба морская

129 г
258 г
263 г
419 г

Печень говяжья
Печень свиная
Горох
Гречка
Фасоль
Геркулес
Баранина
Хлеб ржаной

32 г
40 г
160 г
187 г
251 г
266 г
504 г
546 г

Морская капуста
Печень трески
Хек
Минтай
Путассу, треска
Креветки
Морская рыба
Сердце говяжье

9 г
11 г
56 г
60 г
66 г
81 г
178 г
296 г

Из полученных данных отчетливо видно, что только 2 микроэлемента – фтор и йод мы теоретически можем получить из питьевой воды в достаточном количестве.

Разумеется, приведенные данные ни в коей мере не могут служить рекомендациями по питанию. Этим занимается целая наука диетология. Данная таблица призвана только проиллюстрировать тот факт, что получить все необходимые для организма макро- и микроэлементы гораздо проще и самое главное реальнее из пищи, чем из воды.

Удаление из воды минеральных солей

Процесс, используемый для удаления из воды всех минеральных веществ, называют деминерализацией.

Деминерализацию, проводимую с помощью ионного обмена называют деионизацией. В ходе этого процесса вода обрабатывается в двух слоях ионообменного материала для того, чтобы удаление всех растворенных солей было более эффективным. Используется одновременно или последовательно катионообменная смола, «заряженная» ионами водорода H + , и анионообменная смола, «заряженная» ионами гидроксила ОH - . Поскольку все соли, растворимые в воде, состоят из катионов и анионов, смесь катионообменной и анионообменной смолы полностью заменяет их в очищаемой воде на ионы водорода H + , и гидроксила ОH -. Затем в результате химической реакции эти ионы (положительные и отрицательные) объединяются и создают молекулы воды. Фактически происходит полное обессоливание воды.

Деионизированная вода имеет широкий спектр применения в промышленности. Она используется в химической и фармацевтической отраслях, при производстве телевизионных электронно-лучевых трубок, при промышленной обработке кож и во многих других случаях.

Дистилляция основана на выпаривании обрабатываемой воды с последующей концентрацией пара. Технология является очень энергоемкой, кроме того, в процессе работы дистиллятора на стенках испарителя образуется накипь.

Электродиализ основан на способности ионов перемещаться в объеме воды под действием напряженности электрического поля. Ионоселективные мембраны пропускают через себя либо катионы, либо анионы. В объеме, ограниченном ионообменными мембранами, происходит снижение концентрации солей.

Обратный осмос представляет собой очень важный процесс, являющийся составной частью высокопрофессиональной очистки воды. Первоначально обратный осмос был предложен для опреснения морской воды. Вместе с фильтрацией и ионным обменом обратный осмос значительно расширяет возможности очистки воды.

Принцип его необычайно прост – вода продавливается через полупроницаемую тонкопленочную мембрану. Через мельчайшие поры, имеющие размеры, сопоставимые с размерами молекулы воды, способны просочиться под давлением только молекулы воды и низкомолекулярные газы – кислород, углекислый газ, а все примеси, остающиеся по другую сторону мембраны, сливаются в дренаж.

По эффективности очистки мембранные системы не имеют себе равных: она достигает практически 97-99,9% по любому из видов загрязнений. В результате получается вода, по всем характеристикам напоминающая дистиллированную или сильно обессоленную воду.

Проводить глубокую очистку на мембране можно только с водой, прошедшей предварительную комплексную очистку. Удаление песка, ржавчины и прочих нерастворимых взвесей производится механическим картриджем с ячейками до 5 микрон. Картридж на основе высококачественного гранулированного кокосового угля сорбирует растворенные в воде соединения железа, алюминия, тяжелых и радиоактивных металлов, свободный хлор и микроорганизмы. Очень важна последняя стадия предварительного этапа, где происходит окончательная очистка от мельчайших доз хлора и хлорорганических соединений, разрушительно воздействующих на материал мембраны. Она производится картриджем из прессованного кокосового угля.

После комплексной предварительной очистки вода подается на мембрану, после прохождения которой получается питьевая вода самого высокого класса очистки. А чтобы убрать из нее растворенные газы, придающие неприятный запах и привкус, воду на заключительном этапе пропускают через высококачественный прессованный активированный уголь с добавкой серебра. То обстоятельство, что в воде после очистки в мембранной системе почти полностью отсутствуют минеральные соли, уже не один год вызывает оживленные дискуссии. Хотя необходимое для организма количество макро- и микроэлементов гораздо эффективнее получать через пищу (см. выше), но многие настолько привыкли к вкусу, который придают воде минеральные соли, что при их отсутствии вода кажется безвкусной и «неживой». Однако полностью удалить вредные примеси, сохранив минеральные вещества в полезных концентрациях, оказывается настолько сложно и дорого, что обычно воду сначала максимально очищают, а потом вносят добавки, если это необходимо.

Домашние установки обратного осмоса обычно укомплектовываются накопительными баками для очищенной воды, так как скорость фильтрации воды через мембрану невелика. Накопительный бак, как правило, общей емкостью 12 л, представляет из себя гидроаккумулятор, разделенный внутри эластичной силиконовой перегородкой. С одной стороны перегородка контактирует с очищенной водой, а с другой накачан воздух под давлением 0,5 атм. Такой бак способен накопить в себе не более 6-8 л очищенной воды. Обычно для этого требуется от 2 до 6 часов. Для обеспечения работоспособности системы при недостаточном давлении в магистрали (менее 2,5 - 2,8 атм) устанавливается повышающий насос.

Следует отметить, что если исходная вода очень жесткая, содержит избыточное количество механических или растворенных примесей, то перед системой обратного осмоса рекомендуется установка дополнительных систем водоподготовки (обезжелезиватель, умягчитель, системы обеззараживания, механической очистки и т. п.).

Теоретически, мембраны удаляют почти все известные нам микроорганизмы, в том числе и вирусы, однако, при использовании в быту в системах питьевой воды, мембраны не могут обеспечить полную защиту от микроорганизмов. Потенциальные нарушения герметичности прокладок, производственные дефекты могут позволить некоторым микроорганизмам проникнуть в очищенную воду. Именно поэтому небольшие домашние системы обратного осмоса не должны использоваться в качестве основного средства для устранения биологического загрязнения.

Очень важно понимать, что процесс обратного осмоса идет только при давлении воды в системе не менее 2,5-2,8 атм. Дело в том, что на полупроницаемой мембране со стороны очищенной (обессоленной) воды всегда имеется избыточное осмотическое давление, которое препятствует процессу фильтрации. Именно это давление и необходимо преодолеть.

ЖЕЛЕЗО (Fe)

Как правило, железо присутствует в естественных водах в различных формах:

1. двухвалентные ионы железа, растворимые в воде (Fe 2+);

2. трехвалентные ионы железа, растворимые только в очень кислой воде (Fe 3+);

3. нерастворимая гидроокись трехвалентного железа ;

4. окись трехвалентного железа (Fe 2 O 3), присутствующая в виде частиц ржавчины из труб;

5. в комбинации с органическими соединениями или железными бактериями. Железные бактерии часто живут в воде, содержащей железо. По мере размножения, эти бактерии могут образовывать красно-коричневые наросты, которые могут забивать трубы и снижать напор воды. Разлагающаяся масса этих железных бактерий может быть причиной неприятного запаха и вкуса воды, а также появления пятен.

Железо редко находят в наземных водоемах. При попадании на поверхность вода, содержащая растворенное железо, является обычно чистой и бесцветной, с ярко выраженным вкусом железа. Под воздействием воздуха вода приобретает некую молочную дымку, которая вскоре окрашивается в рыжий цвет (появляется осадок гидроокиси железа). Такая вода оставляет следы практически на всем. Даже при содержании железа в воде 0.3 мг/л она оставляет ржавые пятна на любой поверхности.

Присутствие железа в воде крайне нежелательно. Избыточное железо накапливается в организме человека и разрушает печень, иммунную систему, увеличивает риск инфаркта.

Удовлетворительным способом удаления небольших количеств растворенного железа из воды считается использование ионообменных умягчителей. Нельзя сразу сказать, сколько железа можно удалить. Ответ на этот вопрос в каждом отдельном случае зависит от конструкции устройства, а также от других конкретных условий. Железо, присутствующее в воде в нерастворенной форме, умягчителями не убирается, более того, оно их портит. Поэтому в случае использования умягчителей для удаления растворенного железа, например, из скважины, ни в коем случае нельзя допустить контакта скважинной воды с воздухом.

Самым эффективным способом удаления средних концентраций железа может быть использование окисляющих фильтров. Такой фильтр должен устанавливаться на водопроводную трубу перед устройством для смягчения воды. Окисляющие фильтры обычно содержат фильтрующее вещество, покрытое двуокисью марганца (MnO 2). Это может быть обработанный марганцем глауконитовый песок, синтетический материал из марганца, натуральная марганцевая руда и другие схожие материалы. Окись марганца превращает растворимые ионы двухвалентного железа, содержащиеся в воде, в трехвалентное железо. Кроме того, соединения марганца являются мощным катализатором процесса окисления двухвалентного железа кислородом, растворенным в воде. Поскольку в подземной воде кислорода очень мало, для более эффективного процесса окисления, воду перед фильтром-обезжелезивателем, насыщают кислородом (воздухом). По мере формирования нерастворимой гидроокиси трехвалентного железа, она отфильтровывается из воды гранулированным материалом, находящимся в фильтре.

В случае высоких концентраций железа, для добавления в воду химических окислителей, таких, как гипохлорит натрия (бытовой отбеливатель «Белизна») или раствор марганцовокислого калия, могут использоваться маленькие насосы, эжекторы и другие устройства. Так же, как и двуокись марганца в фильтрах для железа, эти химические окислители превращают растворенное двухвалентное железо в нерастворимое трехвалентное.

МАРГАНЕЦ (Mn)

Марганец обычно обнаруживают в железосодержащей воде. Химически, его можно считать родственным железу, т.к. он встречается в таких же соединениях. Марганец чаще присутствует в воде в виде бикарбоната или гидроокиси, гораздо реже он содержится в виде сульфата марганца. Соприкасаясь с чем-либо, марганец оставляет темно-коричневые или черные следы даже при минимальных концентрациях в воде. Отстой марганца появляется при проведении слесарно-водопроводных работ, в результате чего вода часто оставляет черный осадок, становится мутной. Избыток марганца опасен: его накопление в организме может привести к тяжелейшему заболеванию - болезни Паркинсона.

Для решения проблемы удаления марганца подходят те же самые методы, что и для железа.

Обратный осмос - метод, с помощью которого можно снизить концентрацию фтора в воде в домашних условиях.

НАТРИЙ (Na)

Соли натрия присутствуют во всей природной воде. Они не образуют ни накипи при кипячении, ни творожистого осадка в смеси с мылом. Их высокие концентрации усиливают коррозийное действие воды и могут придавать ей неприятный вкус. Большие количества ионов натрия мешают работе ионообменных устройств для смягчения воды. Там, где вода - очень жесткая и содержит много натрия, в смягченной воде может оставаться много ионов, обусловливающих жесткость.

Эффективным методом удаления натрия из воды в домашних условиях является обратный осмос.

НИТРАТЫ (NO 3 -)

Как правило, почва содержит небольшое количество природных нитратов. Наличие нитратов в воде свидетельствует о том, что она загрязнена органическими веществами. В основном, вода, загрязненная нитратами, встречается в неглубоких скважинах и колодцах, но иногда такая вода бывает и в глубоких скважинах. Даже такая низкая концентрация нитратов, как 10-20 мг/л, может вызывать серьезные заболевания у детей, известны случаи летальных исходов.

Нитраты могут быть удалены из воды с помощью обратного осмоса.

ХЛОРИДЫ И СУЛЬФАТЫ (Cl - , SO4 2-)

Почти вся природная вода содержит ионы хлоридов и сульфатов. Низкие и умеренные концентрации этих ионов придают воде приятный вкус, и их присутствие желательно. Избыточные же концентрации могут сделать воду неприятной для питья. Как хлориды, так и сульфаты вносят свой вклад в общее содержание в воде минеральных веществ. Общая концентрация этих веществ может оказывать самое разное действие - от придания воде повышенной жесткости до электрохимической коррозии. Вода, содержащая сульфатов более, чем 250 мг/л, приобретает ярко выраженный “медицинский привкус”. В избыточной концентрации, сульфаты могут также действовать как слабительное.

Воду можно очищать от хлоридов и сульфатов с помощью обратного осмоса.

СЕРОВОДОРОД (H 2 S)

Сероводород - это газ, который иногда содержится в воде. Присутствие этого газа легко определить по отвратительному запаху “тухлых яиц”, который появляется уже при низких его концентрациях (0.5 мг/л).

Существует несколько способов удаления из воды сероводорода. Большинство из них сводится к окислению и превращению газа в чистую серу. Потом, этот нерастворимый порошок желтого цвета удаляется фильтрованием. Для удаления очень низких концентраций сероводорода вполне достаточно фильтра с активированным углем. При этом, уголь просто адсорбирует газ на свою поверхность.

ФЕНОЛ (С 6 Н 5 ОН)

Одним из наиболее опасных типов промышленных отходов является фенол. В хлорированной воде фенол вступает в химические реакции с хлором и создает обладающие неприятным “медицинским” привкусом и запахом хлорфенольные соединения. При этом неприятный запах появляется при концентрациях фенола равных одной части на миллиард. Фенол и хлорфенольные соединения удаляются пропусканием воды сквозь активированный уголь.

Установлено, что основной радиационный фон на нашей планете (по крайней мере, пока) создается за счет естественных источников излучения. По данным ученых, доля естественных источников радиации в суммарной дозе, накапливаемой среднестатистическим человеком на протяжении всей жизни, составляет 87%. Оставшиеся 13% приходятся на источники, созданные человеком. Из них 11.5% (или почти 88.5% "искусственной" составляющей дозы облучения) формируется за счет использования радиоизотопов в медицинской практике. И только оставшиеся 1.5% являются результатом последствий ядерных взрывов, выбросов с атомных электростанций, утечек из хранилищ ядерных отходов и т.п.

Среди естественных источников радиации "пальму первенства" уверенно держит радон, обуславливающий до 32% общей радиационной дозы.

Радон - это радиоактивный природный газ, абсолютно прозрачный, не имеющий ни вкуса, ни запаха, намного тяжелее воздуха. Образуется в недрах Земли в результате распада урана, который, хоть и в незначительных количествах, но входит в состав практически всех видов грунтов и горных пород. Особенно велико содержание урана (до 2 мг/л) в гранитных породах.

Соответственно в районах, где преимущественным породообразующим элементом является гранит, можно ожидать и повышенное содержание радона. Он не обнаруживается стандартными методами. При наличии обоснованного подозрения на наличие радона, необходимо использовать для измерений специальное оборудование. Радон постепенно просачивается из недр на поверхность, где сразу рассеивается в воздухе, в результате чего его концентрация остается ничтожной и не представляет опасности. Проблемы возникают в случае, если отсутствует достаточный воздухообмен, например, в домах и других помещениях. В этом случае содержание радона в замкнутом помещении может достичь опасных концентраций. Радон попадает в организм человека при дыхании и может вызвать пагубные для здоровья последствия. По данным Службы Общественного Здоровья США, радон - вторая по серьезности причина возникновения у людей рака легких после курения.

Радон очень хорошо растворяется в воде, и при контакте подземных вод с радоном они очень быстро им насыщаются. В случае, когда для снабжения дома водой используются скважины, радон попадает в дом с водой. Растворенный в воде радон действует двояко. С одной стороны, он вместе с водой попадает в пищеварительную систему. С другой стороны, когда вода вытекает из крана, радон выделяется из нее и может скапливаться в значительных количествах в кухнях и ванных комнатах. Концентрация радона в кухне или ванной комнате может в 30-40 раз превышать его уровень в других помещениях, например, в жилых комнатах. Ингаляционный способ воздействия радона считается более опасным для здоровья.

Мерой радиоактивности является активность радионуклида в источнике. Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени к величине этого интервала. В системе СИ измеряется в Беккерелях (Бк, Bq), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м).

В Новосибирске уровень содержания радона в скважинных водах колеблется от 10 до 100 Бк/л, в отдельных районах (Нижняя Ельцовка, Академгородок и др.) доходя до нескольких сотен Бк/л. В российских Нормах Радиационной Безопасности (НРБ-99) предельный уровень содержания радона в воде, при котором уже требуется вмешательство, установлен на уровне 60 Бк/л (американские нормативы гораздо жестче – 11 Бк/л).

Один из наиболее результативных методов борьбы с радоном - аэрирование воды ("пробулькивание" воды пузырьками воздуха, при котором практически весь радон в прямом смысле "улетает на ветер"). Поэтому тем, кто пользуется муниципальной водой беспокоиться практически не о чем, так как аэрирование входит в стандартную процедуру водоподготовки на городских водоочистных станциях. Что же касается индивидуальных пользователей скважинной воды, то исследования, проведенные в США, показали достаточно высокую эффективность активированного угля. Фильтр на основе качественного активированного угля способен удалить до 99.7% радона. Правда со временем этот показатель падает до 79%. Использование же перед угольным фильтром умягчителя позволяет повысить последний показатель до 85%.

информация взята из сайта http://aquafreshsystems.ru/index.htm